About Us Investors Oz (기회특구) News
방문해 주셔서 감사합니다.
박영숙일정표 Photo/Events 공지사항 외국인사 방한·행사 언론보도 글로벌기업기관 사업들 BlockchainAI News BlockchainTechcenter
MOUs & Cooperations MP Millennium Project News


· Korea Offices 

  [일반] [Algae Industry Magazine]35 billion year old immortal life form, algae 게시글을 twitter로 보내기 게시글을 facebook으로 보내기
write date : 2011-03-13 18:13:30   
Special Report: Spirulina Part 1


Rediscovery of a 3.5 billion year

old immortal life form

February 22, 2011, by Robert Henrikson
Spirulina is the immortal descendent of the first photosynthetic life form. Beginning 3.5 billion years ago, blue-green algae created our oxygen atmosphere so other life could evolve. Since then, algae have helped regulate our planet’s biosphere. Algae are two-thirds of the Earth’s biomass. Thousands of algal species covering the Earth are being identified and developed for foods, feeds, pharmaceuticals, biochemicals, fertilizers and biofuels.
Spiral filaments under the microscope

Spiral filaments under the microscope

In the beginning were blue-green algae
When life began on Earth, the carbon dioxide level in our atmosphere was probably 100 times greater than it is today. Life began in a greenhouse atmosphere, and microalgae played the central role in transforming this inhospitable planet into the beauty and richness that makes up life today. How this occurred is particularly relevant in view of our concern with global warming.
Scientists believe the Earth formed about 4.5 billion years ago, and the first life forms appeared 3.6 billion years ago. There is some controversy about how life was actually created on this planet. Because the young sun was 25% cooler at the beginning of life, the greenhouse effect kept a cooler planet warmer. Earth’s nitrogen atmosphere, without any oxygen, was rich in greenhouse gases (like carbon dioxide and methane) absorbing and trapping radiant heat, with the infrared radiation rising from the surface. The oceans were filled with iron, sulfur and other compounds in solution because there was no free oxygen. These substances reacted with and removed oxygen, so the Earth had a great capacity to prevent the appearance of free oxygen.
The first living bacteria, the procaryotes, consumed chemical nutrients as food, but some adapted the energy of the sun to make their own food. The first photosynthesizing procaryotes, called cyanobacteria or blue-green algae, used light energy to break apart the abundant carbon dioxide and water molecules into carbon food compounds, releasing free oxygen. Fossils dating back 3.6 billion years, show filaments of these single cells stacked end on end. The shape unmistakably resembles spirulina.
Drawing of a 3.6 billion year old cyanobacteria fossil

Drawing of a 3.6 billion year old cyanobacteria fossil

Views of Spirulina in the microscope: 1. Long Filaments. 2. Perfect spiral coils. 3. Electron microscope.

Views of Spirulina in the microscope: 1. Long Filaments. 2. Perfect spiral coils. 3. Electron microscope.

Cyanobacteria colonized the oceans and formed a thin film on landmasses. These blue-green algae carried their genetic information in DNA strands in the cell membrane distributing information by exchanging plasmids with another. In this way, the organism became essentially immortal, and one could say linked by its own communication network. Cyanobacteria continued to release oxygen and over a billion years passed.
About 2.3 billion years ago, a new period began when oxygen may have reached a 1% level. Cells with nuclei appeared, a more powerful and complicated life form supported by higher oxygen concentration. These eukaryotes, such as microscopic green algae, may have formed from communities of individual bacteria living within an outer membrane of one of them. The nucleus contained organelles such as chloroplasts, the green bodies that photosynthesize. Because each organelle carried different genetic codes, the loss of information of one of them could mean the death of the cell. To overcome this possibility of death, sex evolved as a way to transfer information between cells.
Chlorella, green microalgae, in the microscope, showing round cell with nucleus

Chlorella, green microalgae, in the microscope, showing round cell with nucleus

About 600 million years ago, Earth entered the present phase with the evolution of large plants and animals. The power requirements of larger organisms like trees and dinosaurs needed a higher oxygen concentration, which increased and remained steady at 21%. For hundreds of millions of years, the Earth’s biosystem has kept the oxygen level carefully balanced between 15%, where higher life forms cannot survive, and 25%, where forests would spontaneously combust in a global fire.
The procaryotes, cyanobacteria or blue-green algae, still cover the land and water surfaces, part of the living mechanism that helps regulate the planet’s biosphere. Realizing that algae took billions of years to build and maintain the atmosphere, it is remarkable that humanity has raised the carbon dioxide concentration over 25% in merely one hundred years.
How important is the contribution of this original life form? Brian Swimme, in The Universe is a Green Dragon wrote: “I think we should take the procaryote as the mascot of the emerging era of the Earth. What better organism to symbolize the vast mystery of the Earth’s embryogenesis … Let’s just hope we can emulate some of the achievements of the procaryotes … To begin with, it would be wonderful if we could contribute something as essential to Earth’s life as oxygen.”
Thousands of algae species cover the earth
There may be more than 25,000 species of algae, living everywhere. They range in size from a single cell to giant kelp over 150 feet long. Most algae live off sunlight through photosynthesis, but some live off organic matter like bacteria.
Larger algae, like seaweeds, are macroalgae. They already have an important economic role. About 70 species are used for food, food additives, animal feed, fertilizers and biochemicals.
Microalgae can only be seen under a microscope. Some serve a vital role for breaking down sewage, improving soil structure and fertility and generating methane and fuels for energy. Others are grown for animal and aquaculture feeds, human foods, biochemicals and pharmaceuticals.
Ocean microalgae are phytoplankton, and are the base of the food chain supporting all higher life. The rich upwelling of nutrients caused by major currents meeting the continental shelf and nutrients from river basins sustain phytoplankton growth.
Microalgae are everywhere—in water, in soils, on rocks, on plants. Blue-green algae are the most primitive, and contain no nucleus or chloroplast. Their cell walls evolved before cellulose, and are composed of soft mucopolysaccharides. Blue-green algae do not sexually reproduce; they simply divide.
Comparing commercially developed microalgae
Microalgae sold as food and feed supplements are chlorella (green algae), spirulina (blue-green algae), aphanizomenon flos-aquae (blue-green algae), dunaliella (red algae), haematococcus (green algae) and schizochytrium (marine microalgae).
Six commercially developed microalgae for food and feed supplements

Six commercially developed microalgae for food and feed supplements

Chlorella has been cultivated since the 1970s. Thousands of tons have been sold each year for the past 40 years as a food supplement. Commercial farms in Taiwan, Southern Japan and Indonesia produce much of the world supply.
Dunaliella likes water even saltier than the ocean. This microalgae is too salty to be eaten as a whole food, but its beta carotene is extracted as an oil or powder and sold as a natural food supplement and antioxidant and a color for aquaculture feeds.
Haematococcus is grown in both outdoor ponds and closed systems for Astaxanthin, a carotenoid pigment, extracted as a fish feed supplement to color salmon flesh and as an anti-oxidant human food supplement.
Schizochytrium is a marine microalgae grown in vats by fermentation, and developed as a source for docosahexaenoic acid (DHA, C22:6 (omega-3) and used as a supplement in a wide variety of food and feed products.
Aphanizomenon flos-aquae is a nitrogen fixing blue-green algae. Harvested from a lake in Oregon, it is sold as a food supplement.
Blue-green algae are cyanobacteria
Many people have asked about differences between two kinds of blue-green algae spirulina and aphanizomenon flos-aquae.
Blue-green algae is also called cyanobacteria. Some can fix atmospheric nitrogen into organic forms. Organic nitrogen is essential for building proteins and amino acid complexes in plants and animals. Although nitrogen gas comprises 78% of the atmosphere, it is not usable by most plants and animals. For more productive crops, nitrogen must be added to soils. Organic nitrogen can only come from adding chemical fertilizers, from existing microbial mineralization of organic matter, by nitrogen-fixing bacteria in legume roots, or by nitrogen-fixing blue-green algae.
Because of this ability to fix nitrogen, blue-green algae is often the first life form to colonize a desolate land area – in deserts, in volcanic rocks, on coral reefs, and even in polar regions, working with lichen to fix nitrogen to the rocks to begin life in the tundra.  Nitrogen-fixing blue-green algae are being developed as natural biofertilizers, but they are not always safe to eat. Many kinds of microcystis, anabaena and aphanizomenon are toxic just like some mushrooms and land plants.
Spirulina is not a nitrogen fixing blue-green algae. It grows in extreme alkaline and high PH environments. Spirulina has a long history of human consumption, known to be safe and nutritious. Most kinds of blue-green algae have not been subject to spirulina’s long safety testing. Hundreds of published scientific studies over the past thirty years have documented no toxicity.
Spirulina lakes and pink flamingos
In natural lakes, the limited supply of nutrients usually regulates growth cycles. New nutrients come from an upwelling from inside the earth, when rains wash soils into the lakes, or from pollution. The algae grows rapidly, reaches a maximum density, and then dies off when nutrients are exhausted. A new seasonal cycle begins when decomposed algae release their nutrients or when more nutrients flow into the lake.
Spirulina blooms naturally in alkaline or soda lakes around the world. Historical records document traditional peoples harvesting and consuming spirulina from lakes in Mexico, Africa and Asia.
Some of the largest natural spirulina lakes are in Central Africa around Lake Chad, and in East Africa along the Great Rift Valley. Under normal water conditions, spirulina may be one of many algal species. But the more alkaline water becomes, the more inhospitable to other life forms, allowing spirulina to flourish as a single species.
World map showing lakes with natural spirulina blooms

World map showing lakes with natural spirulina blooms

Lakes Bodou and Rombou in Chad have a stable monoculture of spirulina dating back centuries. It is predominant in Kenya’s lakes Nakuru and Elementeita and Ethiopia’s lakes Aranguadi and Kilotes. The lesser flamingo evolved a filter in its beak to eat spirulina.
Huge flocks of pink flamingos populate East African lakes, feeding on spirulina

Huge flocks of pink flamingos populate East African lakes, feeding on spirulina

Spirulina thrives in alkaline lakes where it is difficult or impossible for other microorganisms to survive. Because the bacteria level in alkaline water is quite low, the bacteria count in spirulina, harvested and dried without further processing, is low. Algae pioneers have dreamed for decades of harvesting from these lakes to feed millions of nearby hungry people and to support a healthy local economy.
Our rediscovery and interest in algae, the original life form, represents a return to the origins of life to understand and heal our planet.
Adapted from “Spirulina World Food: How this micro algae can transform your health and our planet.” by Robert Henrikson.
Robert Henrikson

Robert Henrikson

Robert Henrikson has been a green business entrepreneur for over 30 years in sustainable development business models for algae, bamboo and natural resources. He recently founded the International Algae Competition, a global challenge to design visionary algae food and energy systems. He is an Algae Alliance consultant on business development, branding, sales and marketing, advising companies and investors in algae ventures.
Robert began developing algae as a global resource in 1977, was a founder of Earthrise Farms, world’s largest spirulina algae farm, and for 20 years, was President of Earthrise Company, pioneer in algae. He developed Earthrise® Spirulina brand products in the USA and 30 countries. Authored and published the book “Spirulina World Food” in 2010, previously “Earth Food Spirulina”, translated into 6 international editions.
Coming soon: Part 2—First Human Consumption and Cultivation
Copyright ©2010-2011 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.
목록 이전글 다음글

[신간 세계미래보고서2035-2055] 포스트코로나 사회변화, 기술변화를 다루며 더 앞당겨진 미래의 생존전략을 말하는 미래예측보고서 박영숙 제롬글렌공저다
[신간 세계미래보고서2035-2055] …
[세계미래보고서2020] 박영숙 제롬글렌신간, 거대한 변혁의 10년이 온다. 땅위를 달리는 자동차의 소멸과 에어택시 드론택시 나르는 자동차에 자율차가 보편화되고, 20여가지 정밀발표 세포배양육등 신 식품기술로 농축산업 소멸로 돼지열병이나 조류독감이 소멸한다.
[세계미래보고서2020] 박영숙 제…
[블록체인혁명2030] 박영숙신간, 미래 최대산업은 블록체인AI. 블록체인만 알아도 부유가 따라온다. Anndy Lian, Shawn Harmsen 공저. 블록체인이 소멸시키는 산업, 새로 부상시키는 산업, 블록체인으로 탄생하는 새로운 길
[블록체인혁명2030] 박영숙신간, …
[신간] 세계미래보고서2019, 박영숙 제롬글렌 공저, 국가를 만드는 사람들, 미래경제시스템, 바이오혁명, 주택교통혁명, 에너지 환경혁명, 일자리혁명, 로봇 인공지능혁명 등 수많은 미래기술과 사회변화 시사
[신간] 세계미래보고서2019, 박영…
[세계미래보고서2018] 박영숙 제롬글렌저. 블록체인AI가 가져올 거대한 금융혁명이 결국 사회혁명으로 이어져. 작아지는 정부와 중간관리, 모든 사회구조가 p2p로 변하면서 중간자들의 수수료 서비스, 중간권력층의 붕괴가 일어나. 똑똑한 개개인들이 탈중앙화 분산권력을 즐
[세계미래보고서2018] 박영숙 제…
[주거혁명2030] 박영숙신간 2017.11.9
[주거혁명2030] 박영숙신간 2017.…
오늘 방문자:  768  어제 방문자:  1,192  총방문자수:  5,184,168